FOUR NEW TRIHYDROXYLATED STEROLS FROM THE SPONGE SPONGIONELLA GRACILIS

Vincenzo Piccialli and Donato Sica*

Dipartimento di Chimica Organica e Biologica dell' Università di Napoli, via Mezzocannone 16. Napoli, Italy
Abstract.-Eight $3 \beta, 5 \alpha, 6 \beta$-trihydroxysterols [1-8], of which four $\{1,2,7$, and $\mathbf{8}\}$ are new, have been isolated from the sponge Spongionella gracilis and their structures deduced by spectroscopic and chemical evidence.

Polyhydroxylated sterols are common metabolites in marine invertebrates such as gorgonians and alcyonarians (1-3), whereas they seem more rare in sponges (4-6). Recently we isolared from the sponge Spongionella gracilis Vosmaer (order Dyctioceratida, family Dysideidae) three new $3 \beta, 6 \alpha$-dihydroxysterols (7). A further investigation of the lipidic extract of the same organism yielded a mixture of the $3 \beta, 5 \alpha, 6 \beta$-trihydroxysterols described in this paper.

RESULTS AND DISCUSSION

Trihydroxysterols 1-8 were obtained by Si gel column chromatography of an $\mathrm{Me}_{2} \mathrm{CO}$ extract of the sponge S . gracilis followed by reverse-phase hplc using different percentages of $\mathrm{H}_{2} \mathrm{O}$ in MeOH . Compounds $\mathbf{3 - 6}$ have recently been isolated from the bryozoan Myriapora truncata as 3,6-diacetyl-derivatives (8); whereas 1, 2, 7, and $\mathbf{8}$ are new, and their structure elucidation is described herein.

In the mass spectrum of the sterols 1-8 the molecular ion was absent. Peaks indicating successive losses of $\mathrm{H}_{2} \mathrm{O}$ and peaks at $\mathrm{m} / \mathrm{z} 287\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and side chain), $269\left(\mathrm{M}^{+}\right.$ $-2 \mathrm{H}_{2} \mathrm{O}$ and side chain), $251\left(\mathrm{M}^{+}-3 \mathrm{H}_{2} \mathrm{O}\right.$ and side chain), $227\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and ring D

$1 \mathrm{R}=$

$2 \mathrm{R}=$

3 R=

$5 R=$

8 R=

fission), and $209\left(\mathrm{M}^{+}-3 \mathrm{H}_{2} \mathrm{O}\right.$ and ring D fission) suggested the presence of three hydroxyl groups and one double bond, all of them located in the rings A, B, and C .

The molecular formula of the most abundant sterol [5], established as $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3}$ by hrms on the ion at $m / z 412\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, indicated it to be a di-unsaturated C_{28}-sterol. The ${ }^{13} \mathrm{C}$-nmr spectrum of 5 indicated the presence of three sp ${ }^{3}$ carbons artached to oxygen atoms, two secondary at $\delta 67.6$ and 74.3 and one tertiary at $\delta 76.2$, and showed signals for four olefinic carbons at $\delta 120.5$ (d), 132.2 (d), 136.2 (d), and 141.6 (s). Its ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum contained one-proton signals centered at $\delta 4.08(\mathrm{bm})$ and 3.63 (bs), consistent with the presence of two secondary carbinol methines. The broad methine multiplet at $\delta 4.08$ had the normal complexity for the 3α-carbinol proton of an A / B trans-steroid (9). This unusually downshifted signal is typical of 3β-hydroxysterols bearing a 5α-hydroxyl group. Two double doublets at $\delta 2.14(J=12.8$ and 12.8 Hz$)$ and $1.78(J=12.8$ and 4.9 Hz$)$, mutually coupled and coupled with the 3α-proton at δ 4.08 , were assigned, respectively, to the $4-\mathrm{H}_{\mathrm{ax}}$ and $4-\mathrm{H}_{\mathrm{eq}}$ protons next to the $\mathrm{C}-5$ substituted position. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum showed, in addition, an olefinic proton at δ 5.35 (bd, $J=4.9 \mathrm{~Hz}$) coupled with the broad singlet at $\delta 3.63$. These data and the agreement of the $\mathrm{C}-18$ methyl resonance at $\delta 0.59$ with the value expected for a Δ^{7} sterol suggested a 7 -ene- $3 \beta, 5 \alpha, 6$-triol structure. The downshift of the $\mathrm{C}-19$ methyl signal at $\delta 1.50$ in the spectrum recorded in pyridine- d_{5} was indicative of the β-orientation of the C-6 hydroxyl group (10). The ergosterol-type side chain of $\mathbf{5}$ was deduced from ${ }^{13} \mathrm{C}$ - (11) and ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra (13). Thus, the structure of this sterol was formulated as ($22 E, 24 R$)-24-methyl-5 α-cholesta-7,22-diene-3 $3,5,6 \beta$-triol [5].

Sterol 5 was obtained by LiAlH_{4} reduction of $\Delta^{7,22}$-ergostadiene- $3 \beta, 5 \alpha$-diol-6-one-3-acetare (12). This reaction afforded also, as a minor product, the 6α epimer of 5 . The ${ }^{1} \mathrm{H} \mathrm{nmr}$ of the synthetic 6β epimer was superimposable on that of the natural sterol 5 , and the two compounds had identical $[\alpha]^{25} \mathrm{D}$ values, confirming the stereochemical assignment of compound 5 . The 6α epimer showed, as expected, differences in the chemical shift values of the $4-\mathrm{Heq}, 6-\mathrm{H}, 7-\mathrm{H}, 18-\mathrm{H}_{3}$, and $19-\mathrm{H}_{3}$ and had a different $[\alpha]^{25}$ D from compound 5 .

The close similarity of the mass and ${ }^{1} \mathrm{H}$-nmr spectra of compound $6\left(\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3}\right)$ with those of 5 suggested that the two compounds must be $\mathrm{C}-24$ epimers, assuming cholestane stereochemistry at $\mathrm{C}-20$. The $21-\mathrm{H}_{3}$ doublet in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of sterol 6 appeared upshifted at $\delta 1.02$ when compared to the corresponding $21-\mathrm{H}_{3}$ signal ($\delta 1.04$) for the sterol 5 . The structure of 6 was, therefore, formulated as $(22 E, 24 S)$ 24 -methyl- 5α-cholesta-7,22-diene-3 $\beta, 5,6 \beta$-triol.

Comparison of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of 5 and 6 with those of $\mathbf{1 - 4 , 7}$, and 8 showed almost identical chemical shift values for $3-\mathrm{H}, 4-\mathrm{H}_{2}, 6-\mathrm{H}, 7-\mathrm{H}, 18-\mathrm{H}_{3}$, and $19-\mathrm{H}_{3}$ indicating that all components of the sterol mixture possessed identical nuclei but differed in the side chain. For all these sterols the stereochemistry at C-20 has been assigned on the assumption that they all belong to the cholestane series.

Sterol 3 had a molecular formula $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3}$. The ions at $m / z 287\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}{ }^{-}\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 269\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}-2 \mathrm{H}_{2} \mathrm{O}\right)$, and $251\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}-3 \mathrm{H}_{2} \mathrm{O}\right)$ established the presence of $\mathrm{a}_{8} \mathrm{H}_{17}$ saturated side chain. The presence of overlapping doublets at $\delta 0.87(\mathrm{~J}=6.6$ $\mathrm{Hz}, 26-\mathrm{H}_{3}$ and $27-\mathrm{H}_{3}$) and a doublet at $\delta 0.93\left(J=6.6 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$ in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of 3 suggested a cholesterol type side chain (13). The assigned structure is, thus, 5α-cholest-7-ene-3 $\beta, 5,6 \beta$-triol.

Sterol 4 had a molecular formula $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{3}$ and a $\mathrm{C}_{8} \mathrm{H}_{15}$ side chain containing one double bond. Its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum contained a doublet at $\delta 0.88(6 \mathrm{H}, J=6.6 \mathrm{~Hz})$ due to the isopropyl group attached to the normal side chain and a doublet at $\delta 1.03(3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}$), which is typical of a $20-\mathrm{Me}$ group in a Δ^{22}-sterol. The ${ }^{1} \mathrm{H}$-nmr spectrum included two olefinic protons that appeared as two multiplets centered at $\delta 5.32$ and
5.22 attributable to the $22-\mathrm{H}$ and $23-\mathrm{H}$ protons, respectively. In a double resonance experiment irradiation at $\delta 2.05$ (tentatively the frequency of $20-\mathrm{H}$) caused the multiplet at $\delta 5.32$ to collapse to a doublet ($J=14.7 \mathrm{~Hz}$) and the $21-\mathrm{H}_{3}$ proton doublet to a singlet, thus, establishing the configuration of the Δ^{22} double bond to be E [from the value (14.7 Hz) of the $22-\mathrm{H} / 23-\mathrm{H}$ coupling constant]. Comparison of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of this sterol with those of sterols having a similar side chain (13) suggested the structure of $(22 E)$ - 5α-cholesta-7,22-diene-3 $\beta, 5,6 \beta$-triol.

The first new trihydroxylated sterol $\mathbf{1}$ had the molecular formula $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3}$. The presence of a $\mathrm{C}_{7} \mathrm{H}_{13}$ monounsaturated side chain was indicated by the ions at $\mathrm{m} / \mathrm{z} 287$, 269 , and 251 . In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum the protons from $\mathrm{C}-20$ to $\mathrm{C}-25 / \mathrm{C}-26$ were readily interrelated by spin decoupling experiments. Irradiation at $\delta 2.03$ (tentatively the frequency of $20-\mathrm{H}$) collapsed the doublet at $\delta 1.01\left(J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$ to a singlet and the $22-\mathrm{H}$ double doublet at $\delta 5.16(\mathrm{~J}=15.7 \mathrm{and} 8.9 \mathrm{~Hz})$ to a doublet. The one-proton multiplet at $\delta 2.18(25-\mathrm{H})$ was coupled with the doublet at $\delta 0.94\left(J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ and $27-\mathrm{H}_{3}$) and with the $23-\mathrm{H}$ double doublet at $\delta 5.28(J=15.7$ and 6.9 Hz). Consequently, the structure of this sterol was established as (22E)-24-nor- 5α-cholesta-7,22-diene- $3 \beta, 5,6 \beta$-triol. The configuration of the Δ^{22} double bond was established as E from the value (15.7 Hz) of the $22-\mathrm{H} / 23-\mathrm{H}$ coupling constant.

The new sterol 2 had a molecular formula $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{3}$ and a $\mathrm{C}_{8} \mathrm{H}_{15}$ monounsaturated side chain. Spin decoupling experiments established the segment $\mathrm{C}-21$ to C -28. Irradiation at $\delta 2.03$ (tentatively the frequency of $20-\mathrm{H}$) collapsed the methyl doublet at δ $1.03\left(J=6.6 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$ into a singlet and simplified the multiplet centered at $\delta 5.20$ ($22-\mathrm{H}$) to a doublet $(J=15.4 \mathrm{~Hz}$). Likewise, irradiation at $\delta 1.92$ (tentatively the frequency of $24-\mathrm{H}$) collapsed the methyl doublet at $\delta 0.94\left(\mathrm{~J}=6.6 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right)$ into a singlet and caused the multiplet at $\delta 5.16(23-\mathrm{H})$ to transform into a doublet $(J=15.4$ $\mathrm{Hz})$. The presence in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of a triplet at $\delta 0.85\left(J=7.3 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right)$ for a terminal ethyl group suggested a (22E)-27-nor-24-methyl- 5α-cholesta-7,22-diene$3 \beta, 5,6 \beta$-triol structure for this sterol. The Δ^{22} configuration was assigned as E on the basis of the value (15.4 Hz) of the $22-\mathrm{H} / 23-\mathrm{H}$ coupling constant.

The new sterol 7 had a molecular formula $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3}$ and a $\mathrm{C}_{9} \mathrm{H}_{17}$ side chain containing one double bond. Its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum showed two broad singlets at $\delta 4.72$ $(28-\mathrm{H})$ and $4.66(28-\mathrm{H})$, a signal at $\delta 2.23$ (septet, $J=6.9 \mathrm{~Hz}, 25-\mathrm{H}$) coupled with the two methyl doublets at $\delta 1.03\left(J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right)$ and $1.02(J=6.9 \mathrm{~Hz}, 27-$ H_{3} or $\left.26-\mathrm{H}_{3}\right)$, and a methyl doublet at $\delta 0.96\left(J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$. These data suggested the 24 -methylene type side chain for the sterol 7 . The assigned structure is, therefore, 24 -methylene- 5α-cholest-7-ene-3 $3,5,6 \beta$-triol.

The last new sterol 8 had molecular formula $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{3}$ and a $\mathrm{C}_{10} \mathrm{H}_{21}$ saturated side chain. On the basis of its ${ }^{1} \mathrm{H}$-nmr spectrum that showed the presence of three methyl groups at $\delta 0.84\left(J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right), 0.82\left(\mathrm{~J}=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right.$ or $\left.26-\mathrm{H}_{3}\right)$, and $0.94\left(J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$ and one methyl triplet at $\delta 0.85\left(J=7.9 \mathrm{~Hz}, 29-\mathrm{H}_{3}\right)$, the structure of ($24 R$)-24-ethyl- 5α-cholest-7-ene- $3 \beta, 5,6 \beta$-triol was assigned to this sterol. The configuration at $\mathrm{C}-24$ was assigned as R by comparison of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{8}$ with those of authentic samples of sitosterol and clionasterol. The side chain ${ }^{1} \mathrm{H}$ nmr data are in agreement with those of sitosterol.

Thus, in addition to $3 \beta, 6 \alpha$-dihydroxysterols, the sponge S. gracilis contains $3 \beta, 5 \alpha, 6 \beta$-trihydroxysterols. The origin of these sterols is unknown. They could derive from the $\Delta^{5,7}$-sterols present in large amount in the sponge (14).

EXPERIMENTAL

General experimental procedures.-Ir spectra were run on a Perkin-Elmer Model 399 spectrophotometer. ${ }^{1} \mathrm{H}$-nmr spectra were recorded on a Bruker $\mathrm{WM}-500$ spectrometer in CDCl_{3} solutions. ${ }^{13} \mathrm{C}$-nmr experiments were performed on a Bruker WM-250 spectrometer: all chemical shifts are given in
ppm with TMS as internal reference ($\delta=0$). Low resolution mass spectra were recorded at 70 eV on an AEI 30 instrument. High resolution mass spectra were obtained on an AEI MS 902 spectrometer. Reverse phase hple was performed on a Varian 2010 instrument equipped with a differential refractometer using Hibar Supersphere ($3 \mu, 4 \times 250 \mathrm{~mm}$) and Hibar RP-18 ($7 \mu, 250 \times 10 \mathrm{~mm}$) columns. Melting points were determined on a Kofler apparatus and are uncorrected. Optical rotations were taken on a Perkin-Elmer Model 141 polarimeter with a 10 cm cell.

Isolation of 1-8 from s. gracilis.-The sponge S. gracilis was collected in the Bay of Naples and supplied by the Zoological Station of Naples. A voucher specimen is on file at our laboratories. Fresh sponge (25 g dry wt after extraction) was cut into small pieces and extracted three times with $\mathrm{Me}_{2} \mathrm{CO}$ at room temperature for 3 days. Solvent was evaporated, and the resulting aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to yield an oily residue (2.77 g). The oil was chromatographed on a Si gel column (200 g) eluted with increasing amounts of MeOH in CHCl_{3}. The fractions eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5)$ contained the mixture of trihydroxysterols $\mathbf{1 - 8}$ homogeneous by tlc. The sterol mixture was fractionated by reverse phase hplc using MeOH $\mathrm{H}_{2} \mathrm{O}(85: 15)$ as eluent to obtain pure samples of $\mathbf{1}(0.8 \mathrm{mg}), \mathbf{3}(1.0 \mathrm{mg}), 7(1.0 \mathrm{mg})$, and $\mathbf{8}(1.2 \mathrm{mg})$, and mixtures of $2,4,5$, and 6 . Further separations using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(8: 2)$ afforded pure samples of 2 (1.0 $\mathrm{mg}), 4(1.2 \mathrm{mg}), 5(1.8 \mathrm{mg})$, and $\mathbf{6}(1.4 \mathrm{mg})$.

Compound 1.—Mp 215-217 ${ }^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.35}$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{dd}, J=15.7$ and $8.9 \mathrm{~Hz}, 22-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{dd}, J=15.7$ and 6.9 $\mathrm{Hz}, 23-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.18(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.08\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\left.\mathrm{Hz}, 21-\mathrm{H}_{3}\right), 0.94\left(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ and $\left.27-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel. int.) 384 $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 21\right), 369$, $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 21\right), 366\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 26\right), 351\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 100\right)$, $287\left(\mathrm{M}^{+}\right.$-side chain and $\left.\mathrm{H}_{2} \mathrm{O}, 10\right), 269\left(\mathrm{M}^{+}\right.$-side chain and $\left.\mathrm{H}_{2} \mathrm{O}, 54\right), 251\left(\mathrm{M}^{+}\right.$-side chain and $\left.\mathrm{H}_{2} \mathrm{O}, 70\right)$, $227\left(\mathrm{M}^{+}\right.$-side chain- $2 \mathrm{H}_{2} \mathrm{O}$ and 42,38$), 225\left(\mathrm{M}^{+}\right.$-side chain- $3 \mathrm{H}_{2} \mathrm{O}$ and 27,22), 209 (M^{+}-side chain$3 \mathrm{H}_{2} \mathrm{O}$ and 42,27$)$; hrms $m / z 384.3034\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}\right.$ requires 384.3027).

Compound 2.- $\mathrm{Mp} 235-237^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.36$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.18(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14$ (1 H , dd, $J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}$), 2.03 (submerged by other signals, 20-H), 1.92 (submerged by other signals, $24-\mathrm{H}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.09\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 0.60(3 \mathrm{H}, \mathrm{s}, 18-$ $\left.\mathrm{H}_{3}\right)$; ms m / z (rel. int.) $398\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 37\right), 383\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 25\right), 380\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 46\right), 365\left(\mathrm{M}^{+}-\right.$ $2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3}, 100$), 287 (11), 269 (56), 251 (90), 227 (41), 225 (28), 209 (34); hrms $m / z 398.3175$ $\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{2}\right.$ requires 398.3184).

Compound 3.-Mp 227-229 ${ }^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.36$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8 \mathrm{and} 12.8 \mathrm{~Hz}$, $4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.09\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 21-$ $\left.\mathrm{H}_{3}\right), 0.87\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ and $\left.27-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$; ms m / z (rel. int.) $400\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 28), $3.85\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 26\right), 382\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 37\right), 367\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 100\right), 287$ (12), 269 (36), 251 (75), 227 (42), 225 (26), 209 (32).

Compound 4.—Mp 234-236 (meOH); ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.36$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{H}$ or $22-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ or $23-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-$ H), $3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and 4.9 Hz , $4-\mathrm{Heq}), 1.08(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.88\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ and $27-$ $\left.\mathrm{H}_{3}\right), 0.60\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel. int.) $398\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 30\right), 383\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 25\right), 380\left(\mathrm{M}^{+}-\right.$ $2 \mathrm{H}_{2} \mathrm{O}, 36$), $367\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\mathrm{CH}_{3}, 100$), 287 (13), 269 (36), 251 (70), 227 (42), 225 (26), 209 (30); hrms $m / z 398.3188\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{2}\right.$ requires 398.3184$)$.

Compound 5.- $[\alpha)^{25} \mathrm{D}-75$ (c 0.16 , pyridine); mp $246-248^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.35(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and $6.9 \mathrm{~Hz}, 23-\mathrm{H})$, $5.15(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and $7.9 \mathrm{~Hz}, 22-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}$, $J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.08\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.04$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right.$ or $\left.26-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (pyridine- $d_{5}, 250 \mathrm{MHz}$), $\delta 5.20$ $(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{bs}, 7-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{dd}$, $J=12.8$ and $\left.12.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.95(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\left.\mathrm{Hz}, 28-\mathrm{H}_{3}\right), 0.86\left(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ and $\left.27-\mathrm{H}_{3}\right), 0.65\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (pyridine- d_{5}, $62.9 \mathrm{MHz}) \delta 141.6(\mathrm{C}-8), 136.2(\mathrm{C}-22), 132.2(\mathrm{C}-23), 120.5(\mathrm{C}-7), 76.2(\mathrm{C}-5), 74.3(\mathrm{C}-6), 67.6(\mathrm{C}-3)$, 56.2 (C-17), 55.3 (C-14), $43.8(\mathrm{C}-13), 43.8$ (C-9 or C-24), 43.2 (C-24 or C-9), $41.9(\mathrm{C}-4), 40.8(\mathrm{C}-20)$, 40.0 (C-12), 38.1 (C-10), 33.9 (C-2), 33.4 (C-25), 32.6 (C-1), 28.5 (C-16), 23.5 (C-15), 22.5 (C-11),
21.5 (C-21), 20.2 (C-26 or C-27), 19.9 (C-27 or C-26), 18.8 (C-19), 17.9 (C-28), 12.6 (C-18). Sidechain carbon assignments are based on literature data (11). Nuclear carbon assignments were facilitated using 5α-cholestane- $3 \beta, 5,6 \beta$-triol as a model compound (11). Assignments were confirmed by DEPT experiments. Ms m / z (rel. int.) $412\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 31\right), 397\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 20\right), 394\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 30\right), 379$ $\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 100\right), 287$ (11), 269 (58), 251 (75), 227 (42), 225 (27), 209 (21).

Compound 6.—Mp 245-247 ${ }^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.35$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and $6.9 \mathrm{~Hz}, 23-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and 7.9 $\mathrm{Hz}, 22-\mathrm{H}) 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}), 1.78$ $(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.08\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.91(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.9 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right.$ or $26-$ $\left.\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \mathrm{ms} \mathrm{m} / \mathrm{z}(\mathrm{rel}$ int. $) 412\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 30\right), 397\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 20\right), 394\left(\mathrm{M}^{+}-\right.$ $\left.2 \mathrm{H}_{2} \mathrm{O}, 30\right), 379\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 100\right), 287(10), 269(60), 251$ (75), 227 (40), 225 (25), 209 (20); hrms $m / z 412.3353\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2}\right.$ requires 412.3341$)$.

Compound 7.—Mp 244-246 (MeOH); ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.36$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{bs}, 28-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{bs}, 28-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}$, $6-\mathrm{H}), 2.23(1 \mathrm{H}$, septet, $J=6.9 \mathrm{~Hz}, 25-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $12.8 \mathrm{~Hz}, 4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}$, $J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.09\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right), 1.02(3 \mathrm{H}$, $\mathrm{d}, J=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}$ or $\left.26-\mathrm{H}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$; ms m / z (rel. int.) $412\left(\mathbf{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 15\right), 397\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 18\right), 394\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 25\right), 379\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$, and CH_{3}, 100), 287 (7), 269 (24), 267 (29), 251 (63), 227 (78), 225 (53), 209 (61); hrms m/z $412.3335\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2}\right.$ requires 412.3341).

Compound 8.-Mp 254-256 ${ }^{\circ}(\mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.36$ $(1 \mathrm{H}, \mathrm{bd}, J=4.9 \mathrm{~Hz}, 7-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=12.8 \mathrm{and} 12.8 \mathrm{~Hz}$, $4-\mathrm{Hax}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-\mathrm{Heq}), 1.08\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{H}_{3}\right), 0.85$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 29-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right.$ or $\left.27-\mathrm{H}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right.$ or $\left.26-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \mathrm{ms} m / z$ (rel. int.) $428\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 31\right), 413\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 18\right), 410$ $\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 33\right), 395\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{3}, 100\right), 287(12), 269(56), 251(75), 227(40), 225(25), 209$ (20); hrms $m / z 428.3670\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{2}\right.$ requires 428.3654).

SYNTHESIS OF 5 AND ITS 6α-EPIMER.-The title compounds were obtained as described by Fieser $e t$ al. (12) starting from $\Delta^{7,22}$-ergostadiene- $3 \beta, 5 \alpha$-diol-6-one-3-acetate with LiAlH_{4} reduction at room temperature for 15 min affording a mixture of 6β-and 6α-epimers in the ratio of $3: 1$, which were separated by hplc on a Hibar RP-18 ($7 \mu, 250 \times 10 \mathrm{~mm}$) column using MeOH as eluent. The 6β-epimer $\left[\{\alpha]^{25} \mathrm{D}-72, c 0.9\right.$ pyridine; reported (12) $\left.-82 ; 5,-75\right\}$ showed chemical and physical properties identical to those of natural 5; 6α-epimer: $[\alpha]^{25} \mathrm{D}+14.9$ (60.8 , pyridine); mp $245-246^{\circ}(\mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 5.22(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and $6.9 \mathrm{~Hz}, 23-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{dd}, J=14.8$ and $7.9 \mathrm{~Hz}, 22-$ $\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{bs}, 7-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{bs}, 6-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=12.8$ and $4.9 \mathrm{~Hz}, 4-$ Heq), $1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 0.84(3 \mathrm{H}$, $\mathrm{d}, J=6.9 \mathrm{~Hz}, 26-\mathrm{H}_{3}$ or $\left.27-\mathrm{H}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 27-\mathrm{H}_{3}\right.$ or $\left.26-\mathrm{H}_{3}\right), 0.56\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$.

ACKNOWLEDGMENTS

We thank Stazione Zoologica di Napoli for supplying the sponge. This work was supported by Ministero della Pubblica Istruzione. Mass spectral data were provided by Servizio di Spettrometria di Massa del CNR e dell'Universita di Napoli. The assistance of the staff is gratefully acknowledged.

LITERATURE CITED

1. F.J. Schmitz, in: "Marine Natural Products: Chemical and Biological Perspectives." Ed. by P. Scheur, Vol. I, Academic Press, New York, 1978, p. 241.
2. B.M. Jagodzinska, J.S. Trimmer, W. Fenical, and C. Djerassi, J. Org. Chem., 50, 2988 (1985).
3. M.B. Ksebati and F.J. Schmitz, Steroids, 43, 639 (1984).
4. S.P. Gunasekera and F.J. Schmitz, J. Org. Chem., 48, 885 (1983).
5. N. Fusetani, S. Matsunaga, and S. Konosu, Tetrabedron Lett., 22, 1985 (1981).
6. T.N. Makarieva, L.K. Shubina, A.I. Kalinovsky, V.A. Stonik, and G.B. Elyakov, Steroids, 42, 267 (1983).
7. V. Piccialli and D. Sica, J. Nat. Prod., 49, 779 (1986).
8. F. Cafieri, E. Fattorusso, M. Gavagnin, and C. Santacroce, J. Nat. Prod., 48, 944 (1985).
9. J.E. Bridgeman, P.C. Cherry, A.S. Clegg, J.M. Evans, E.R.H. Jones, A. Kasal, V. Kumar, G.D. Meakins, Y. Morisawa, E.E. Richards, and P.D. Woodgate, J. Chem. Sor. (C), 250 (1970).
10. P.V. Demarco, E. Farkas, D. Doddrell, B.L. Mylari, and E. Wenkert, J. Am. Chem. Soc., 90, 5480 (1968).
11. J.W. Blunt and J.B. Stothers, Org. Magn. Reson., 90, 439 (1977).
12. M. Fieser, A. Quilico, A. Niekon, W.E. Rosen, E.J. Tarlton, and L.F. Fieser, J. Am. Chem. Soc., 75, 4066 (1953).
13. I. Rubinstein, L.J. Goad, A.D.H. Clague, and L.J. Mulheirn, Pbytochemistry, 15, 195 (1976).
14. D. Sica and V. Piccialli, Comp. Biochem. Pbysiol., 81B, 115 (1985).

Received 9 April 1987

